Skip to contents

Communicates with S-EWSNet (https://doi.org/10.1098/rsos.231767), a deep learning framework for modelling and anticipating regime shifts in dynamical spatial systems, and returns the model's prediction for the inputted spatial time series.

Usage

sewsnet_predict(
  x,
  id = NULL,
  envname,
  delta = 0.1,
  inp_size = 25,
  model_path = default_sewsnet_path()
)

Source

Deb, S., Ekansh, M., Paras, G. et al. (2024) Optimal sampling of spatial patterns improves deep learning-based early warning signals of critical transitions. Royal Society Open Science. 11, 231767.

Arguments

x

A list of square integer matrices representing presence/absence pixels. Pixels could be vegetation presence. Ensure entires are integers not numeric.

id

Vector identifying each entry in x. Could be year, plot identity etc.

envname

A string naming the Python environment prepared by ewsnet_init().

delta

Numeric. Difference in densities.

inp_size

Numeric. Size of clipped Fourier transformed square matrix.

model_path

A string naming the path to the S-EWSnet model installed by sewsnet_reset().

Value

A dataframe of S-EWSNet predictions. Values represent the estimated probability that the quoted event will occur.

Examples

#A dummy dataset of a patchy savanna
#monitored over 10 sites/years.

vegetation_data <- vector("list", length = 50)
vegetation_data <- lapply(vegetation_data,function(x){
matrix(rbinom(128^2,1,0.6),nrow = 128,ncol=128)
})

#Activate python environment (only necessary
#on first opening of R session).

if (FALSE) { # \dontrun{
ewsnet_init(envname = "EWSNET_env")
} # }

#Generate EWSNet predictions.

if (FALSE) { # \dontrun{
pred <- sewsnet_predict(
 vegetation_data,
 delta = 0.1,
 inp_size = 25,
 envname = "EWSNET_env")
 } # }